Hi

 

I;ve just made quick toyMC, I get that the probability(maxSigma) > 3.7 for experiments consisting

of 24 measurements is 0.566 \pm 0.033.

 

 

Voila the code (needs SetupUrania):

 

from scipy import random as rnd
from Urania import *
AccessPackage("Bs2MuMu")

from RTuple import *

 

def do_set_of_experiments(N):
    l = []
    for i in range(N):
        l.append(abs(rnd.normal()))
    l.sort()
    l.reverse()
    return l[0]

def do_test(N, Nexp = 50000):
    tup = RTuple("File_test",["maxSigma/F"])
    for i in range(Nexp):
        tup.fillItem("maxSigma",do_set_of_experiments(24))
        tup.fill()
    tup.close()

                

 

Then you just call do_test(24) and analyse the produced Ntuple.

 

 

 

Cheers;

 

Diego

 

 

 

 


Dende: bfys-physics-bounces@nikhef.nl [bfys-physics-bounces@nikhef.nl] en nome de Rob Lambert [Rob.Lambert@cern.ch]
Enviado: martes, 02 de xullo de 2013 10:53
Ata: Marcel Merk
Cc: bfys-physics@nikhef.nl
Asunto: Re: [Bfys-physics] B->K*mumu paper

Yes. Chebychev's inequality gives an estimate for how often a deviation this large this should happen, and it seems to be perfectly within the realms of probability, in fact it seems to be expected, and even two such deviations would not be strange.

Gerhard might want to correct me here, though...

Cheers,
 
Rob
 
------------------------------------------
Robert Lambert
FOM-VU-NIKHEF-Bfys LHCb
Email: rob.lambert@cern.ch
------------------------------------------
Nikhef N251
Tel: +31 20 592 2131  
Fax: 
+31 20 592 5155 
------------------------------------------
CERN, 13-1-018 
Tel: +41 22 767 4024 
Fax: +41 22 766 8109
------------------------------------------

From: Marcel Merk [marcel.merk@nikhef.nl]
Sent: 02 July 2013 10:51
To: Rob Lambert
Cc: bfys-physics@nikhef.nl
Subject: Re: [Bfys-physics] B->K*mumu paper

Hi Rob,
Let me just clarify: you question the claim of 0.5%, is that correct?
just to make sure I understand which point you comment on.
cheers,
- Marcel


On 2 July 2013 10:06, Rob Lambert <Rob.Lambert@cern.ch> wrote:
Erm, just some statistical queries.. what about chebychev's inequality:

http://en.wikipedia.org/wiki/Chebyshev's_inequality

"No more than 1/k^{2} of the distribution's values can be more than k standard deviations away from the mean" 

In this case it is 1/(3.7*3.7) which is 7%, and 24*7% is 1.75, so no more than 1.75 of the observables should be this far away. One deviation this large is perfectly expected from Chebychev's inequality.

Thanks,
 
Rob
 
------------------------------------------
Robert Lambert
FOM-VU-NIKHEF-Bfys LHCb
Email: rob.lambert@cern.ch
------------------------------------------
Nikhef N251
Tel: +31 20 592 2131  
Fax: 
+31 20 592 5155 
------------------------------------------
CERN, 13-1-018 
------------------------------------------

From: bfys-physics-bounces@nikhef.nl [bfys-physics-bounces@nikhef.nl] on behalf of Marcel Merk [marcel.merk@nikhef.nl]
Sent: 01 July 2013 18:01
To: bfys-physics@nikhef.nl
Subject: [Bfys-physics] B->K*mumu paper

Dear bfys-physics friend,
This is to let you know that I collect comments to the paper below.
To stimulate you to read it: we claim that the probability that the measurement is consistent with the Standard Model is only 0.5%. A local discrepancy of 3.7 sigma is observed.

  LHCb PAPER-2013-037:
      "Measurement of form factor independent observables
       in the decay $B^0\to K^{*0}\mu^+\mu^-$"
      Link            : https://cds.cern.ch/record/1557918
      Deadline        : 09-Jul-2013

best regards,
- Marcel

_______________________________________________
Bfys-physics mailing list
Bfys-physics@nikhef.nl
https://mailman.nikhef.nl/mailman/listinfo/bfys-physics