“Improve our Software”

Suggestions for Improvements
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Properties: Reminder

Document intent of code, unify code, allows for future extensions
Example: Histogram Property in a GaudiHistoAlg

header: Gaudi::HistolDDef m histodef
AIDA::IHistogramlD *m hist;

c’tor: declareProperty( m histoDef
= Gaudi::HistolDDef (“PV3D", -0.5,10.5,11 ) )

initialize: m hist = book( m histoDef )

can eg. add non-uniform binning without changing C++ ‘client’ code — just augment
Gaudi::Histo | DDef and book — and to use it, just update the python configuration code.

This is an example of ‘open for extension, closed for modification’ (Meyer open/close
principle)



http://en.wikipedia.org/wiki/Open/closed_principle

Properties: Suggestion

Would be even nicer as:
header: Gaudi::HistogramlD m histo;
c’tor: declareProperty( m histo = { “pPV3D”, -0.5, 10.5, 11 } );
initialize: m histo.book( this );
execute: 1f (m histo) m histo.fill( .. );
as there is only ‘one’ object — m_histo — instead of two...

This would not require a callback to respond to updated properties (if implemented right)!

and yes, | know about ‘do not book, use plot which books on demand’

— discouraged in Hilt, as it introduces overhead on filling (must check if booked on every fill)



Properties: Suggestions

possible new dedicated property types:
- filenames
® deal with environment variables, define search paths

® make all I/O go through IVFSSvc... (which would allow eg. ‘relocation’ of files into a
zip archive — albeit due to checkpointing this has become less critical )

- tools
® could avoid having to use ‘addTool’ in python!

® move the ‘PUBLIC’ and ‘PRIVATE’ into a property of the property instead of
‘encoding’ it in the name

® avoid bare tool pointers????
- TES locations

® could add eg. alternate locations — no more RawEventLocations vs.
RawEventLocation,

® differentiate read vs. write;

® allows (at least, makes a lot easier) static analysis during python configuration: verify
‘put’ (in one algo) precedes ‘get’ (in another algo)



Properties: Suggestions

Make better use of existing capabilities of property parsing.
Example: LODUConfig
(note: certainly not the only case, but it happens to be one | know well)

® replace eg. the following ‘options’ snippet:

ToolSvc.LODUConfig. TCK _0x0038.Conditions = {
{ "name=[Electron(Et)>12]","data=[Electron(Et)]"," “comparator=[>]", “threshold=[12]"},
{ "name=[Electron(Et)>50]","data=[Electron(Et)]","comparator=[>]", "threshold=[50]"},

}
® with:
ToolSve.LODUConfig. TCK_0x0038.Conditions = [

{“name” : “Electron(Et)>12", “data” :“Electron(Et)” ,“comparator” : “>" ,“threshold” : “12” },
{“name” : “Electron(Et)>50", “data” :“Electron(Et)” ,“comparator” : “>" ,“threshold” : “50” },

]

® Conditions (IMHO) should be a vector<map<string, string>>, not a
vector<vector<string>>

® |everage the power of the built-in parsing of properties, don’t do it
yourself!

® And it would make manipulating this in python easier ;-)



C++] |

Less “boiler plate” code

® auto

® range based loops
Lambda functions

® many uses: eg move (some) control logic
out of loops

® Could always do this by defining a small
struct, but not in ‘local scope’

Move semantics and RHS references

* allows for ‘perfect forwarding’ and
‘emplacement’

variadic templates

tuples

nullptr

treads, async, future

.... many, many more features....
Please, please, please take a look at:

GoingNative 2012 presentations, GoingNative 2013

presentations

std::vector<Hit™> hits = ... ;
for (std::vector<Hit*>::const_iterator ihit = hits.begin();
ihit!=hits.end(); ++ihit) {
if ('useXOnly || ( (*ihit)->layer()!=0 &&(*ihit)->layer()!=3))
continue;
/I use *ihit

std::vector<Hit*> hits = ... ;
for (auto hit : hits ) {
if ('useXOnly || ( hit->layer()!=0 && hit->layer()!=3 ) )
continue;
/] use hit

std::vector<Hit™> hits = ... ;

auto xOnly = [](const Hit& h) { return h.layer()==0||h.layer()==3; };
auto all = [](const Hit& h) { return true; }

auto predicate = useXOnly ? xOnly :all ;

for (auto hit : hits ) {
if (!predicate(*hit)) continue;
/I use hit


http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
http://channel9.msdn.com/Events/GoingNative/2013

C++1|: refactoring code

How to take advantage of C++11 ?

Need to do lots of ‘tedious’
changes

They can be automated with clang- Extra Clang Tools 3.3 documentation

L]
mOderr"Ze! « Introduction :; Conternts :: Use-Auto Transform »

Clang C++ Modernizer User’s Manual

(Note: more uniform code layout
can be done with clang-format)

clang-modernize is a standalone tool used to automatcally convert C++ code written against old standards 10 use features of the newest
C++ standard where appropriate

Transformations

The Modernizer is a collection of independent transforms which can be independently enabled. The transforms currently implemented ar

Loop Convert Transform
Use-Nullptr Transform

Please, please, please take a look at: P

Add-Override Transform
Pass-By-Value Transform

, GoingNative 2013:The Care and Replace-AutoPtr Transform
Feeding of C++'s Dragons

+ get ‘modern’,‘better’ code

- backporting more work


http://clang.llvm.org/extra/clang-modernize.html
http://clang.llvm.org/docs/ClangFormat.html
http://channel9.msdn.com/Events/GoingNative/2013/The-Care-and-Feeding-of-C-s-Dragons

Event Model: Predicates & LoKi

LoKi provides flexible, ‘open for extension’ framework for selection of
event model objects

e (ADMASS('KS0')<35*MeV) & (VFASPF(VCHI2PDOF)<30) &
(BPVLTIME('PropertimeFitter/properTime:PUBLIC') > 2.0*ps)

But cannot currently be used in REC
® Dependencies, dependencies...
® Deals with Particles, List of Particles, Tracks, Vertices, ...
® but not all event model classes

The functor/predicate definitions don’t live ‘next’ to the event model
classes, but in separate LoKi packages — no guarantee that a given
‘getter’ has a matching functor/predicate.

Proposal:

|) integrate functor/predicate functionality into LHCb event model
classes

2) use GOD to generate the simple ‘getter’ based functors & predicates
3) Provide generic ‘compositing’ functionality.
4) Re-use this functionality in LoKi

Note: LoKi contains many more complicated functors/predicates —
let’s take one step at a time

std::vector<Hit> hits = ... ;
auto pred = useXOnly ? Predicates::Hit::XOnly
: Predicates::Hit:: True ;

for (const auto& hit : hits ) {
if (\pred(hit)) continue;
/I use hit



Data Model: Locality of Reference

PatForwardHits PatForwardHit : Tf::HitExtension<Tf::LineHit> Tf::LineHit
= vector<PatForwardHit*>

PatForwardHits hits = ... ;

for (const auto& ihit : ( hits ) ) {

if (! Predicates::Hit::XOnly( ihit ) ) continue;
/I use ihit (which is PatFwdHit* )

}
All ‘objects’ are new’ed individually

(although MemPoolAlloc will do its best to keep them together)

loop body may eg. use hit->layer()
This layout is not very ‘cache friendly’....



Data Model: Collections of Objects

Make collections of objects the building block,




Data Model: Collections of Objects

Make collections of objects the building block,




Data Model: Collections of Objects

(Container)
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Try to reason about collections of objects
Do not expose the actual layout of the data

Optimal layout probably depends on actual CPU (or
GPU!)

eg: optimal ‘block size’ probably depends on cache line
size (ie. lvyBridge: 64 bytes)

Thus: Do not expose the details of this layout!!!

Borrow ideas from ‘Arrow Street’:

Expose a ‘view’ of an ‘object’, and iterate over ‘views’
A ‘view’ 1) binds a container and index,

2) is obtained by dereferencing an iterator
(which in turn is obtained from the
container)

Effectively, a ‘view’ fakes an individual object, and the
compiler (hopefully) optimizes it away

Step ll:“Member-wise” data (a la ’split’ mode in Root)



Data Model: Collections of Objects
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Views could be augmented (as in eg.
PatForward!)



\

e

Data Modgl:

Collecti
[

layer
layer
layer
layer

EVE
layer

layer
layer

-
\o

ons of Objects

Views could be augmented (as in eg.
PatForward!) by ‘nesting’

the resulting view would span multiple
containers

(reminds me of an SQL ‘join” — and ZEBRA)

Fortunately, all the details can be completely
hidden!

Caution: there is an implied extra layer of
indirection here (which is bad)



Data Model: Example Definition (one layer)

class HitContainer {
private:

I/ private shadow Hit_ class for (blocked) storage

constexpr static unsigned N = 16;

template <unsigned N_> struct Hit_ {
std::array<double,N_> m_x;
std::array<int,N_> m_layer;
std::array<int,N_> m_flags;

5

std::vector<Hit_ <N>> m_ container;

size t m_size;

I private accessors to storage

double x(unsigned i) const { return m_container[i/N].m_x[i%N]; }

int layer(unsigned i) const { return m_container[i/N].m_layer[i%N]; }

int flags(unsigned i) const { return m_container[i/N].m_flags[i%N]; }
public:

class Hit ;// provide a 'view' into items in the container

class Iterator;// provide iterator over views

HitContainer( unsigned capacity =0 ) ;
void emplace_back(double x, int layer, int flags) ;

Iterator begin() { return lterator(this,0); }
Iterator end() { return Iterator(this,m_size); }

/I provider iterator over view
class HitContainer::Iterator {
private:
HitContainer®* m_parent;
unsigned  m_offset;
friend HitContainer;
Iterator(HitContainer™ parent, unsigned offset);
public:
Hit operator®() { return Hit(m_parent,m_offset); }
bool operator!=(const Iterator& rhs) const;
bool operator==(const Iterator& rhs) const;
Iterator& operator++() { ++m_offset; return *this; }

// provide a ‘public view' of objects in the container
class HitContainer:Hit {
private:
friend HitContainer;
Hit(HitContainer* parent, unsigned offset)

/] this class ‘binds’ a container and offset....
HitContainer® m_parent;
unsigned m_ offset;

public:
Il ... to some public visible accessors
double x() const { return m_parent->x(m_offset); }
int layer() const { return m_parent->layer(m_offset); }
int flags() const { return m_parent->flags(m_ offset); }

%

Note: no (explicit) pointers, no (explicit) new/delete...



Data Model: Example Usage

int main() {
HitContainer ¢(1000);
for (int i=0;i<1000;++i) { c.emplace back( double(i)/100,i%4, 0 ); }
for (const auto& hit : ¢ ) { cout << hit.x() << " " << hit.layer() << endl; }

double x = 0;
for (const auto& hit : ¢ ) { if (hit.layer()==2) x += hit.x(); }
cout << “sum of x for layer 2:" x << end];

return O;

in the loop :
|.  ’hit’ gets elided
2. ‘hit.layer()’ and ‘hit.x()’ get fully inlined

—> HitContainer::Hit is completely optimized away...
(Apple clang-500.2.79 based on LLVM 3.3svn (OSX 10.9) at -O2)



Data Model: Proposed Next Steps

Try to implement these ideas in PatForwardHit : Tf::HitExtension<Tf::LineHit>
Critical code (major fraction of Hlt time!)
Well ‘isolated’ (changes to limited # of packages)
® These are NOT Event Model classes (!)
Benchmark!!!!
® the ‘toy’ doesn’t show any real difference ;-(

® maybe (hopefully?) it is too small & too simple

If (and only if) it makes a difference, then consider teaching GOD to generate
similar code directly from the XML description... (start with low level, eg. hits,
and work upwards eventually)



Aside: Extralnfo

Note that one could implement a ‘clean’ Extralnfo this way already now.

Instead of adding a {int: double } store into each ‘Particle’ (with badly defined
ints as keys!) add, for each ‘observable’, a dedicated ‘table’ with a single pointer
to the relevant (keyed) container of particles, and [ key, value ]. The ‘name’ of this
table in the TES would replace the int ‘key’ in Extralnfo.

Could group ‘related’ observables together (i.e. value could be an object)

(note: this was proposed during the Particle event model review looooong ago)

+ :if you want to loop over eg. subset of Particles (Tracks, ... ) based on value
of ‘value’: loop over ‘table’ — i.e. use as an ‘index’.

+ : better management of what is what (use TES location for key, less change of
collisions, better readable)

- :if you want, for a given Particle, to look up the ‘value’ — i.e. use as an ntuple

- : more work to store



One last (crazy?) suggestion

°g

Use clang (through ROOT®6 cling?) to ‘just in time’ compile the expressions
generated by eg.

(PT > 500.0*MeV)
(P > 5000.0*MeV)

(MIPCHI2DV(PRIMARY) > 4.0)

(( (TRCHI2DOF < 2.5)& ISMUON) | (TRCHI2DOF < 2.5))

i.e. JIT this expression in ‘initialize’ (and eg. run changes), use the optimized
version during ‘execute’

This is the only way | can (so far) think of on how inline ‘composed’ predicates
— which is necessary for effective vectorization...

Current setup uses python as ‘factory’ — with the above string as the ‘recipe’
for what to build — to build/compose a C++ ‘expression tree’; i.e. already now,
after construction, there is no python running during execute.

ps. benchmarks show that this is NOT the bottleneck in CombineParticles —
the fitting of vertices dominates right now.



