
“Improve our Software”	

!

Suggestions for Improvements

Gerhard Raven, VU University Amsterdam and Nikhef

Document intent of code, unify code, allows for future extensions	

Example: Histogram Property in a GaudiHistoAlg	

	
header: Gaudi::Histo1DDef m_histodef!
!! AIDA::IHistogram1D *m_hist;!

	
c’tor: declareProperty(m_histoDef !
!! ! ! ! = Gaudi::Histo1DDef(“PV3D", -0.5,10.5,11))!

	
initialize: m_hist = book(m_histoDef)!

	
can eg. add non-uniform binning without changing C++ ‘client’ code — just augment
Gaudi::Histo1DDef and book — and to use it, just update the python configuration code. 	

This is an example of ‘open for extension, closed for modification’ (Meyer open/close
principle)	

Properties: Reminder

http://en.wikipedia.org/wiki/Open/closed_principle

Properties: Suggestion
Would be even nicer as:	

	
	
 header: Gaudi::Histogram1D m_histo;	

	
	
 c’tor: declareProperty(m_histo = { “PV3D”, -0.5, 10.5, 11 });	

	
	
 initialize: m_histo.book(this);!

	
	
 execute: if (m_histo) m_histo.fill(…);!

as there is only ‘one’ object — m_histo — instead of two… 	

This would not require a callback to respond to updated properties (if implemented right)!	

!

and yes, I know about ‘do not book, use plot which books on demand’	

— discouraged in Hlt, as it introduces overhead on filling (must check if booked on every fill)

Properties: Suggestions

!
	
 possible new dedicated property types:	

- filenames 	

• deal with environment variables, define search paths	

• make all I/O go through IVFSSvc… (which would allow eg. ‘relocation’ of files into a
zip archive — albeit due to checkpointing this has become less critical)	

- tools 	

• could avoid having to use ‘addTool’ in python!	

• move the ‘PUBLIC’ and ‘PRIVATE’ into a property of the property instead of
‘encoding’ it in the name	

• avoid bare tool pointers????	

- TES locations 	

• could add eg. alternate locations — no more RawEventLocations vs.
RawEventLocation, 	

• differentiate read vs. write; 	

• allows (at least, makes a lot easier) static analysis during python configuration: verify
‘put’ (in one algo) precedes ‘get’ (in another algo)	

- …

Properties: Suggestions

!
Make better use of existing capabilities of property parsing.	

Example: L0DUConfig 	

(note: certainly not the only case, but it happens to be one I know well)	

• replace eg. the following ‘options’ snippet:	

	
 	
 	
 ToolSvc.L0DUConfig.TCK_0x0038.Conditions = {	

	
 	
 	
 	
 { "name=[Electron(Et)>12]","data=[Electron(Et)]",“comparator=[>]", “threshold=[12]"},	

	
 	
 	
 	
 { "name=[Electron(Et)>50]","data=[Electron(Et)]","comparator=[>]", "threshold=[50]"},	

	
 	
 	
 }	

• with:	

	
 	
 	
 ToolSvc.L0DUConfig.TCK_0x0038.Conditions = [

	
 	
 	
 	
 { “name” : “Electron(Et)>12”, “data” : “Electron(Et)” , “comparator” : “>” , “threshold” : “12” },	

	
 	
 	
 	
 { “name” : “Electron(Et)>50”, “data” : “Electron(Et)” , “comparator” : “>” , “threshold” : “50” },	

	
 	
 	
]	

• Conditions (IMHO) should be a vector<map<string, string>>, not a
vector<vector<string>> 	

• Leverage the power of the built-in parsing of properties, don’t do it
yourself!	

• And it would make manipulating this in python easier ;-)

C++11

Less “boiler plate” code	

• auto	

• range based loops	

Lambda functions	

• many uses: eg move (some) control logic
out of loops	

• Could always do this by defining a small
struct, but not in ‘local scope’	

Move semantics and RHS references	

• allows for ‘perfect forwarding’ and
‘emplacement’	

variadic templates	

tuples	

nullptr	

treads, async, future	

…. many, many more features….	

Please, please, please take a look at:	

GoingNative 2012 presentations, GoingNative 2013
presentations

std::vector<Hit*> hits = … ;	

for (auto hit : hits) {	

 	
 if (!useXOnly || (hit->layer()!=0 && hit->layer()!=3)) 	

	
 	
 continue;	

	
 // use hit	

	
 ….	

}

std::vector<Hit*> hits = … ;	

for (std::vector<Hit*>::const_iterator ihit = hits.begin();	

 ihit!=hits.end(); ++ihit) {	

 	
 if (!useXOnly || ((*ihit)->layer()!=0 &&(*ihit)->layer()!=3)) 	

	
 	
 continue;	

	
 // use *ihit	

	
 ….	

}

std::vector<Hit*> hits = … ;	

auto xOnly = [](const Hit& h) { return h.layer()==0||h.layer()==3; };	

auto all = [](const Hit& h) { return true; }	

auto predicate = useXOnly ? xOnly : all ;	

!
for (auto hit : hits) {	

	
 if (!predicate(*hit)) continue;	

	
 // use hit	

	
 ….	

}

http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
http://channel9.msdn.com/Events/GoingNative/2013

C++11: refactoring code

How to take advantage of C++11 ?	

Need to do lots of ‘tedious’
changes	

They can be automated with clang-
modernize!	

(Note: more uniform code layout
can be done with clang-format)	

!

Please, please, please take a look at:	

, GoingNative 2013: The Care and
Feeding of C++'s Dragons	

!

+ get ‘modern’, ‘better’ code	

- backporting more work

http://clang.llvm.org/extra/clang-modernize.html
http://clang.llvm.org/docs/ClangFormat.html
http://channel9.msdn.com/Events/GoingNative/2013/The-Care-and-Feeding-of-C-s-Dragons

!
LoKi provides flexible, ‘open for extension’ framework for selection of
event model objects 	

• (ADMASS('KS0')<35*MeV) & (VFASPF(VCHI2PDOF)<30) &
(BPVLTIME('PropertimeFitter/properTime:PUBLIC') > 2.0*ps)	

	
 But cannot currently be used in REC	

• Dependencies, dependencies…	

• Deals with Particles, List of Particles, Tracks, Vertices, … 	

• but not all event model classes	

The functor/predicate definitions don’t live ‘next’ to the event model
classes, but in separate LoKi packages — no guarantee that a given
‘getter’ has a matching functor/predicate. 	

Proposal: 	

1) integrate functor/predicate functionality into LHCb event model
classes	

2) use GOD to generate the simple ‘getter’ based functors & predicates	

3) Provide generic ‘compositing’ functionality.	

4) Re-use this functionality in LoKi 	

Note: LoKi contains many more complicated functors/predicates —
let’s take one step at a time

Event Model: Predicates & LoKi
std::vector<Hit> hits = … ;	

auto pred = useXOnly ? Predicates::Hit::XOnly	

	
 	
 	
 : Predicates::Hit::True ;	

!
for (const auto& hit : hits) {	

	
 if (!pred(hit)) continue;	

	
 // use hit	

	
 ….	

}

Data Model: Locality of Reference
PatForwardHit : Tf::HitExtension<Tf::LineHit> Tf::LineHitPatForwardHits	

= vector<PatForwardHit*>

PatForwardHits hits = … ;	

for (const auto& ihit : (hits)) {	

	
 if (! Predicates::Hit::XOnly(ihit)) continue;	

	
 // use ihit (which is PatFwdHit*)	

	
 ….	

}

All ‘objects’ are new’ed individually	

(although MemPoolAlloc will do its best to keep them together)	

!
loop body may eg. use hit->layer()	

This layout is not very ‘cache friendly’….

layer

layer

layer

layer

Data Model: Collections of Objects

Make collections of objects the building block,	

	
	

!

Data Model: Collections of Objects

Make collections of objects the building block,	

	
	

!

Try to reason about collections of objects	

Do not expose the actual layout of the data	

Optimal layout probably depends on actual CPU (or
GPU!)	

	
 eg: optimal ‘block size’ probably depends on cache line
size (ie. IvyBridge: 64 bytes)	

Thus: Do not expose the details of this layout!!! 	

Borrow ideas from ‘Arrow Street’:	

Expose a ‘view’ of an ‘object’, and iterate over ‘views’	

	
 A ‘view’ 1) binds a container and index, 	

	
 2) is obtained by dereferencing an iterator 	

	
 	
 	
 (which in turn is obtained from the 	

	
 	
 	
 container)	

Effectively, a ‘view’ fakes an individual object, and the
compiler (hopefully) optimizes it away

Data Model: Collections of Objects

Step II: “Member-wise” data (a la ’split’ mode in Root)

layer

layer
layer
layer
layer

layer

layer
layer
layer
layer

offset=2

View

Container

inv
ari

an
t d

ur
ing

 ite
rat

ion
	

ov
er

 co
nta

ine
r!

Data Model: Collections of Objects

a data model class is a “view” of (an entry in)a container : 	

it fakes the ‘Object’ — instead navigates a container 	

should be optimized away (no virtual fcns!)…

layer

layer
layer
layer
layer

layer

layer
layer
layer
layer

offset=3

offset=1

offset=2

used=True

used=True

used=False

Views could be augmented (as in eg.
PatForward!)

Data Model: Collections of Objects

layer

layer
layer
layer
layer

layer

layer
layer
layer
layer

offset=3
offset=1
offset=2

used=True
used=True
used=False

Views could be augmented (as in eg.
PatForward!) by ‘nesting’	

the resulting view would span multiple
containers	

(reminds me of an SQL ‘join’ — and ZEBRA)	

Fortunately, all the details can be completely
hidden!	

Caution: there is an implied extra layer of
indirection here (which is bad)

offset=2
offset=1
offset=3

Data Model: Example Definition (one layer)

class HitContainer {	

 private:	

	
 // private shadow Hit_ class for (blocked) storage	

	
 constexpr static unsigned N = 16;	

	
 template <unsigned N_> struct Hit_ {	

	
 	
 std::array<double,N_> m_x;	

	
 	
 std::array<int,N_> m_layer;	

	
 	
 std::array<int,N_> m_flags;	

	
 };	

	
 std::vector<Hit_<N>> m_container;	

	
 size_t m_size;	

!
	
 // private accessors to storage	

	
 double x(unsigned i) const { return m_container[i/N].m_x[i%N]; }	

	
 int layer(unsigned i) const { return m_container[i/N].m_layer[i%N]; }	

	
 int flags(unsigned i) const { return m_container[i/N].m_flags[i%N]; }	

 public:	

	
 class Hit ;// provide a 'view' into items in the container	

	
 class Iterator; // provide iterator over views	

!
	
 HitContainer(unsigned capacity = 0) ;	

	
 void emplace_back(double x, int layer, int flags) ;	

!
	
 Iterator begin() { return Iterator(this,0); }	

	
 Iterator end() { return Iterator(this,m_size); }	

};	

 // provide a ‘public view' of objects in the container	

 class HitContainer::Hit {	

 private:	

 friend HitContainer;	

 Hit(HitContainer* parent, unsigned offset) 	

!
	
 // this class ‘binds’ a container and offset….	

 HitContainer* m_parent;	

 unsigned m_offset;	

!
 public:	

 // … to some public visible accessors	

 double x() const { return m_parent->x(m_offset); }	

 int layer() const { return m_parent->layer(m_offset); }	

 int flags() const { return m_parent->flags(m_offset); }	

 };	

!
!
!
!
!

 // provider iterator over view	

 class HitContainer::Iterator {	

 private:	

 HitContainer* m_parent;	

 unsigned m_offset;	

 friend HitContainer;	

 Iterator(HitContainer* parent, unsigned offset);	

 public:	

 Hit operator*() { return Hit(m_parent,m_offset); }	

 bool operator!=(const Iterator& rhs) const;	

 bool operator==(const Iterator& rhs) const;	

 Iterator& operator++() { ++m_offset; return *this; }	

 };	

Note: no (explicit) pointers, no (explicit) new/delete…

Data Model: Example Usage

int main() {	

 HitContainer c(1000);	

 for (int i=0;i<1000;++i) { c.emplace_back(double(i)/100, i%4, 0); }	

 for (const auto& hit : c) { cout << hit.x() << " " << hit.layer() << endl; }	

!
 double x = 0;	

 for (const auto& hit : c) { if (hit.layer()==2) x += hit.x(); }	

 cout << “sum of x for layer 2: “ x << endl;	

!
 return 0;	

}	

in the loop : 	

1. ’hit’ gets elided	

2. ‘hit.layer()’ and ‘hit.x()’ get fully inlined	

—> HitContainer::Hit is completely optimized away…	

(Apple clang-500.2.79 based on LLVM 3.3svn (OSX 10.9) at -O2)

Data Model: Proposed Next Steps

Try to implement these ideas in PatForwardHit : Tf::HitExtension<Tf::LineHit>	

Critical code (major fraction of Hlt time!)	

Well ‘isolated’ (changes to limited # of packages)	

• These are NOT Event Model classes (!) 	

Benchmark!!!!	

• the ‘toy’ doesn’t show any real difference ;-(

• maybe (hopefully?) it is too small & too simple 	

!

If (and only if) it makes a difference, then consider teaching GOD to generate
similar code directly from the XML description… (start with low level, eg. hits,
and work upwards eventually)

Aside: ExtraInfo

Note that one could implement a ‘clean’ ExtraInfo this way already now.	

!

Instead of adding a { int : double } store into each ‘Particle’ (with badly defined
ints as keys!) add, for each ‘observable’, a dedicated ‘table’ with a single pointer
to the relevant (keyed) container of particles, and [key, value]. The ‘name’ of this
table in the TES would replace the int ‘key’ in ExtraInfo. 	

Could group ‘related’ observables together (i.e. value could be an object)	

(note: this was proposed during the Particle event model review looooong ago)	

!

+ : if you want to loop over eg. subset of Particles (Tracks, …) based on value
of ‘value’: loop over ‘table’ — i.e. use as an ‘index’.	

+ : better management of what is what (use TES location for key, less change of
collisions, better readable)	

- : if you want, for a given Particle, to look up the ‘value’ — i.e. use as an ntuple	

- : more work to store

One last (crazy?) suggestion

Use clang (through ROOT6 cling?) to ‘just in time’ compile the expressions
generated by eg. 	

 (PT > 500.0*MeV) !
 & (P > 5000.0*MeV) !
 & (MIPCHI2DV(PRIMARY) > 4.0)!
 & (((TRCHI2DOF < 2.5)& ISMUON)|(TRCHI2DOF < 2.5))!

i.e. ‘JIT’ this expression in ‘initialize’ (and eg. run changes), use the optimized
version during ‘execute’	

This is the only way I can (so far) think of on how inline ‘composed’ predicates
— which is necessary for effective vectorization…	

Current setup uses python as ‘factory’ — with the above string as the ‘recipe’
for what to build — to build/compose a C++ ‘expression tree’; i.e. already now,
after construction, there is no python running during execute.	

ps. benchmarks show that this is NOT the bottleneck in CombineParticles —
the fitting of vertices dominates right now.

