“Improve our Software”

Suggestions for Improvements

S
NI!!EF

Properties: Reminder

Document intent of code, unify code, allows for future extensions
Example: Histogram Property in a GaudiHistoAlg

header: Gaudi::HistolDDef m histodef
AIDA::IHistogramlD *m hist;

c’tor: declareProperty(m histoDef
= Gaudi::HistolDDef (“PV3D", -0.5,10.5,11))

initialize: m hist = book(m histoDef)

can eg. add non-uniform binning without changing C++ ‘client’ code — just augment
Gaudi::Histo | DDef and book — and to use it, just update the python configuration code.

This is an example of ‘open for extension, closed for modification’ (Meyer open/close
principle)

http://en.wikipedia.org/wiki/Open/closed_principle

Properties: Suggestion

Would be even nicer as:
header: Gaudi::HistogramlD m histo;
c’tor: declareProperty(m histo = { “pPV3D”, -0.5, 10.5, 11 });
initialize: m histo.book(this);
execute: 1f (m histo) m histo.fill(..);
as there is only ‘one’ object — m_histo — instead of two...

This would not require a callback to respond to updated properties (if implemented right)!

and yes, | know about ‘do not book, use plot which books on demand’

— discouraged in Hilt, as it introduces overhead on filling (must check if booked on every fill)

Properties: Suggestions

possible new dedicated property types:
- filenames
® deal with environment variables, define search paths

® make all I/O go through IVFSSvc... (which would allow eg. ‘relocation’ of files into a
zip archive — albeit due to checkpointing this has become less critical)

- tools
® could avoid having to use ‘addTool’ in python!

® move the ‘PUBLIC’ and ‘PRIVATE’ into a property of the property instead of
‘encoding’ it in the name

® avoid bare tool pointers????
- TES locations

® could add eg. alternate locations — no more RawEventLocations vs.
RawEventLocation,

® differentiate read vs. write;

® allows (at least, makes a lot easier) static analysis during python configuration: verify
‘put’ (in one algo) precedes ‘get’ (in another algo)

Properties: Suggestions

Make better use of existing capabilities of property parsing.
Example: LODUConfig
(note: certainly not the only case, but it happens to be one | know well)

® replace eg. the following ‘options’ snippet:

ToolSvc.LODUConfig. TCK _0x0038.Conditions = {
{ "name=[Electron(Et)>12]","data=[Electron(Et)]"," “comparator=[>]", “threshold=[12]"},
{ "name=[Electron(Et)>50]","data=[Electron(Et)]","comparator=[>]", "threshold=[50]"},

}
® with:
ToolSve.LODUConfig. TCK_0x0038.Conditions = [

{“name” : “Electron(Et)>12", “data” :“Electron(Et)” ,“comparator” : “>" ,“threshold” : “12” },
{“name” : “Electron(Et)>50", “data” :“Electron(Et)” ,“comparator” : “>" ,“threshold” : “50” },

]

® Conditions (IMHO) should be a vector<map<string, string>>, not a
vector<vector<string>>

® |everage the power of the built-in parsing of properties, don’t do it
yourself!

® And it would make manipulating this in python easier ;-)

C++] |

Less “boiler plate” code

® auto

® range based loops
Lambda functions

® many uses: eg move (some) control logic
out of loops

® Could always do this by defining a small
struct, but not in ‘local scope’

Move semantics and RHS references

* allows for ‘perfect forwarding’ and
‘emplacement’

variadic templates

tuples

nullptr

treads, async, future

.... many, many more features....
Please, please, please take a look at:

GoingNative 2012 presentations, GoingNative 2013

presentations

std::vector<Hit™> hits = ... ;
for (std::vector<Hit*>::const_iterator ihit = hits.begin();
ihit!=hits.end(); ++ihit) {
if ('useXOnly || ((*ihit)->layer()!=0 &&(*ihit)->layer()!=3))
continue;
/I use *ihit

std::vector<Hit*> hits = ... ;
for (auto hit : hits) {
if ('useXOnly || (hit->layer()!=0 && hit->layer()!=3))
continue;
/] use hit

std::vector<Hit™> hits = ... ;

auto xOnly = [](const Hit& h) { return h.layer()==0||h.layer()==3; };
auto all = [](const Hit& h) { return true; }

auto predicate = useXOnly ? xOnly :all ;

for (auto hit : hits) {
if (!predicate(*hit)) continue;
/I use hit

http://channel9.msdn.com/Events/GoingNative/GoingNative-2012
http://channel9.msdn.com/Events/GoingNative/2013

C++1|: refactoring code

How to take advantage of C++11 ?

Need to do lots of ‘tedious’
changes

They can be automated with clang- Extra Clang Tools 3.3 documentation

L]
mOderr"Ze! « Introduction :; Conternts :: Use-Auto Transform »

Clang C++ Modernizer User’s Manual

(Note: more uniform code layout
can be done with clang-format)

clang-modernize is a standalone tool used to automatcally convert C++ code written against old standards 10 use features of the newest
C++ standard where appropriate

Transformations

The Modernizer is a collection of independent transforms which can be independently enabled. The transforms currently implemented ar

Loop Convert Transform
Use-Nullptr Transform

Please, please, please take a look at: P

Add-Override Transform
Pass-By-Value Transform

, GoingNative 2013:The Care and Replace-AutoPtr Transform
Feeding of C++'s Dragons

+ get ‘modern’,‘better’ code

- backporting more work

http://clang.llvm.org/extra/clang-modernize.html
http://clang.llvm.org/docs/ClangFormat.html
http://channel9.msdn.com/Events/GoingNative/2013/The-Care-and-Feeding-of-C-s-Dragons

Event Model: Predicates & LoKi

LoKi provides flexible, ‘open for extension’ framework for selection of
event model objects

e (ADMASS('KS0')<35*MeV) & (VFASPF(VCHI2PDOF)<30) &
(BPVLTIME('PropertimeFitter/properTime:PUBLIC') > 2.0*ps)

But cannot currently be used in REC
® Dependencies, dependencies...
® Deals with Particles, List of Particles, Tracks, Vertices, ...
® but not all event model classes

The functor/predicate definitions don’t live ‘next’ to the event model
classes, but in separate LoKi packages — no guarantee that a given
‘getter’ has a matching functor/predicate.

Proposal:

|) integrate functor/predicate functionality into LHCb event model
classes

2) use GOD to generate the simple ‘getter’ based functors & predicates
3) Provide generic ‘compositing’ functionality.
4) Re-use this functionality in LoKi

Note: LoKi contains many more complicated functors/predicates —
let’s take one step at a time

std::vector<Hit> hits = ... ;
auto pred = useXOnly ? Predicates::Hit::XOnly
: Predicates::Hit:: True ;

for (const auto& hit : hits) {
if (\pred(hit)) continue;
/I use hit

Data Model: Locality of Reference

PatForwardHits PatForwardHit : Tf::HitExtension<Tf::LineHit> Tf::LineHit
= vector<PatForwardHit*>

PatForwardHits hits = ... ;

for (const auto& ihit : (hits)) {

if (! Predicates::Hit::XOnly(ihit)) continue;
/I use ihit (which is PatFwdHit*)

}
All ‘objects’ are new’ed individually

(although MemPoolAlloc will do its best to keep them together)

loop body may eg. use hit->layer()
This layout is not very ‘cache friendly’....

Data Model: Collections of Objects

Make collections of objects the building block,

Data Model: Collections of Objects

Make collections of objects the building block,

Data Model: Collections of Objects

(Container)

>3
< © layer
& o
layer
layer
layer

. J

EVE
layer

layer
layer

\o

Try to reason about collections of objects
Do not expose the actual layout of the data

Optimal layout probably depends on actual CPU (or
GPU!)

eg: optimal ‘block size’ probably depends on cache line
size (ie. lvyBridge: 64 bytes)

Thus: Do not expose the details of this layout!!!

Borrow ideas from ‘Arrow Street’:

Expose a ‘view’ of an ‘object’, and iterate over ‘views’
A ‘view’ 1) binds a container and index,

2) is obtained by dereferencing an iterator
(which in turn is obtained from the
container)

Effectively, a ‘view’ fakes an individual object, and the
compiler (hopefully) optimizes it away

Step ll:“Member-wise” data (a la ’split’ mode in Root)

Data Model: Collections of Objects

\

offset=3

>

<

orrset—
used-= I"UG

offset=2.
used=False

7

=

layer
layer
layer
layer

EVE
layer

layer
layer

\o

Views could be augmented (as in eg.
PatForward!)

\

e

Data Modgl:

Collecti
[

layer
layer
layer
layer

EVE
layer

layer
layer

-
\o

ons of Objects

Views could be augmented (as in eg.
PatForward!) by ‘nesting’

the resulting view would span multiple
containers

(reminds me of an SQL ‘join” — and ZEBRA)

Fortunately, all the details can be completely
hidden!

Caution: there is an implied extra layer of
indirection here (which is bad)

Data Model: Example Definition (one layer)

class HitContainer {
private:

I/ private shadow Hit_ class for (blocked) storage

constexpr static unsigned N = 16;

template <unsigned N_> struct Hit_ {
std::array<double,N_> m_x;
std::array<int,N_> m_layer;
std::array<int,N_> m_flags;

5

std::vector<Hit_ <N>> m_ container;

size t m_size;

I private accessors to storage

double x(unsigned i) const { return m_container[i/N].m_x[i%N]; }

int layer(unsigned i) const { return m_container[i/N].m_layer[i%N]; }

int flags(unsigned i) const { return m_container[i/N].m_flags[i%N]; }
public:

class Hit ;// provide a 'view' into items in the container

class Iterator;// provide iterator over views

HitContainer(unsigned capacity =0) ;
void emplace_back(double x, int layer, int flags) ;

Iterator begin() { return lterator(this,0); }
Iterator end() { return Iterator(this,m_size); }

/I provider iterator over view
class HitContainer::Iterator {
private:
HitContainer®* m_parent;
unsigned m_offset;
friend HitContainer;
Iterator(HitContainer™ parent, unsigned offset);
public:
Hit operator®() { return Hit(m_parent,m_offset); }
bool operator!=(const Iterator& rhs) const;
bool operator==(const Iterator& rhs) const;
Iterator& operator++() { ++m_offset; return *this; }

// provide a ‘public view' of objects in the container
class HitContainer:Hit {
private:
friend HitContainer;
Hit(HitContainer* parent, unsigned offset)

/] this class ‘binds’ a container and offset....
HitContainer® m_parent;
unsigned m_ offset;

public:
Il ... to some public visible accessors
double x() const { return m_parent->x(m_offset); }
int layer() const { return m_parent->layer(m_offset); }
int flags() const { return m_parent->flags(m_ offset); }

%

Note: no (explicit) pointers, no (explicit) new/delete...

Data Model: Example Usage

int main() {
HitContainer ¢(1000);
for (int i=0;i<1000;++i) { c.emplace back(double(i)/100,i%4, 0); }
for (const auto& hit : ¢) { cout << hit.x() << " " << hit.layer() << endl; }

double x = 0;
for (const auto& hit : ¢) { if (hit.layer()==2) x += hit.x(); }
cout << “sum of x for layer 2:" x << end];

return O;

in the loop :
|. ’hit’ gets elided
2. ‘hit.layer()’ and ‘hit.x()’ get fully inlined

—> HitContainer::Hit is completely optimized away...
(Apple clang-500.2.79 based on LLVM 3.3svn (OSX 10.9) at -O2)

Data Model: Proposed Next Steps

Try to implement these ideas in PatForwardHit : Tf::HitExtension<Tf::LineHit>
Critical code (major fraction of Hlt time!)
Well ‘isolated’ (changes to limited # of packages)
® These are NOT Event Model classes (!)
Benchmark!!!!
® the ‘toy’ doesn’t show any real difference ;-(

® maybe (hopefully?) it is too small & too simple

If (and only if) it makes a difference, then consider teaching GOD to generate
similar code directly from the XML description... (start with low level, eg. hits,
and work upwards eventually)

Aside: Extralnfo

Note that one could implement a ‘clean’ Extralnfo this way already now.

Instead of adding a {int: double } store into each ‘Particle’ (with badly defined
ints as keys!) add, for each ‘observable’, a dedicated ‘table’ with a single pointer
to the relevant (keyed) container of particles, and [key, value]. The ‘name’ of this
table in the TES would replace the int ‘key’ in Extralnfo.

Could group ‘related’ observables together (i.e. value could be an object)

(note: this was proposed during the Particle event model review looooong ago)

+ :if you want to loop over eg. subset of Particles (Tracks, ...) based on value
of ‘value’: loop over ‘table’ — i.e. use as an ‘index’.

+ : better management of what is what (use TES location for key, less change of
collisions, better readable)

- :if you want, for a given Particle, to look up the ‘value’ — i.e. use as an ntuple

- : more work to store

One last (crazy?) suggestion

°g

Use clang (through ROOT®6 cling?) to ‘just in time’ compile the expressions
generated by eg.

(PT > 500.0*MeV)
(P > 5000.0*MeV)

(MIPCHI2DV(PRIMARY) > 4.0)

(((TRCHI2DOF < 2.5)& ISMUON) | (TRCHI2DOF < 2.5))

i.e. JIT this expression in ‘initialize’ (and eg. run changes), use the optimized
version during ‘execute’

This is the only way | can (so far) think of on how inline ‘composed’ predicates
— which is necessary for effective vectorization...

Current setup uses python as ‘factory’ — with the above string as the ‘recipe’
for what to build — to build/compose a C++ ‘expression tree’; i.e. already now,
after construction, there is no python running during execute.

ps. benchmarks show that this is NOT the bottleneck in CombineParticles —
the fitting of vertices dominates right now.

