Subthreshold Ξ production in $p+A$ collisions in a BUU model

M. Zétényi, Gy. Wolf

Wigner RCP, Budapest

ExtreMe Matter Institute, Darmstadt

Strangeness in Quark Matter Utrecht, 10-15 July 2017

Introduction

HADES has measured Ξ [−] production in

► $Ar + KCl$ at $\sqrt{s_{NN}} = 2.61$ GeV: [Phys.Rev.Lett. 103, 132301 (2009)]

 $P_{\equiv -}$ $\frac{P_{\Xi^+}}{P_{\Lambda+\Sigma^0}} = (5.6\pm1.2^{+1.8}_{-1.7})\times10^{-3}$

► *p* + *Nb* at
$$
\sqrt{s_{NN}}
$$
 = 3.2 GeV: [Phys. Rev. Lett. 114, 212301 (2015)]
\n $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4} \equiv^- / \text{event}$
\n $\frac{P_{\Xi^-}}{P_{A+\Sigma^0}}$ = (1.2 ± 0.3 ± 0.4) × 10⁻²

Below the threshold of $\sqrt{s_{NN,thr}} = 3.25$ GeV

 Ξ multiplicity is 25 \times the prediction of a statistical model

Only UrQMD can describe the data

- \blacktriangleright heavy resonances decaying to $\Xi K K$ wit BR=10%
- In tuned to $p + Nb \rightarrow$ describe $Ar + KCl$

Introduction

Subthreshold strangeness production is interesting, because

- \blacktriangleright sensitive to reaction dynamics (collision of secondaries, Fermi motion, in-medium effects, etc.)
- \triangleright strangeness is conserved \rightarrow high threshold \rightarrow still subthreshold at higher energies where large baryon densities are reached
- $p + A$ reactions are important, because
	- intermediate step between $p + p$ and $A + A$
	- riangleright cleaner than $A + A$
	- \blacktriangleright less production channels (e.g. collision of two secondaries is unlikely)

Possible Ξ production channels:

 $\overline{K}Y \to \pi \Xi$ $(Y = \Lambda, \Sigma)$, $YY \to \Xi N$, $\eta \Lambda \to \Xi K$

Ξ production in $\Lambda/\Sigma + N$

New production mechanism:

 $p + N \rightarrow N + K + \sqrt{\Sigma}$: $\sqrt{s_{NN}} = 3.2$ GeV c.f. $\sqrt{s_{thr}} = 2.55$ GeV for Λ $\sqrt{s_{thr}}$ = 2.62 GeV for Σ

 $\Lambda/\Sigma + N \to N + \Xi + K$: $\sqrt{s_{NN}}_{max} = 3.05$ GeV c.f. $\sqrt{s_{thr}} = 2.75$ GeV

Ξ production in $\Lambda/\Sigma + N$

New production mechanism:

 $p + N \rightarrow N + K + \sqrt{\Sigma}$: $\sqrt{s_{NN}} = 3.2$ GeV c.f. $\sqrt{s_{thr}} = 2.55$ GeV for Λ $\sqrt{s_{thr}}$ = 2.62 GeV for Σ

 $\Lambda/\Sigma + N \to N + \Xi + K$: $\sqrt{s_{NN}}_{max} = 3.05$ GeV c.f. $\sqrt{s_{thr}} = 2.75$ GeV

Cross section for $\Lambda/\Sigma + N \rightarrow N \Xi K$

Assume that Ξ production proceeds via an intermediate Λ[∗]/Σ ∗

If everything else is also created via Λ^*/Σ^* resonances, then $\sigma_{YN,tot}$ = resonance production cross section

 Ξ production: $\sigma_{\text{YM}\to\Xi} \approx BR_{Y^*\to\Xi K} \times \sigma_{\text{YM tot}}$

 $\sigma_{\gamma N, tot} \approx 10$ mb (similar to $p + p$ total cross section)

$$
A(2100) 7/2^-
$$

 $I(J^P) = 0(\frac{7}{2}^{-})$

Mass $m = 2090$ to 2110 (\approx 2100) MeV Full width $\Gamma = 100$ to 250 (\approx 200) MeV

 $BR_{Y^*\rightarrow \equiv \kappa} \approx 3\%$

 $\rightarrow \sigma_{YN\rightarrow\Xi} \approx 0.3$ mb

Version of BUU developed by Gy. Wolf

24 baryon resonances are propagated

Elementary cross sections for (non-strange) particle production are described by resonance production and decays

Resonance properties and creation cross sections are determined by a fit to πN and NN data

Successfully applied to strangeness production near and below threshold

[H.W. Barz, M.Z., Gy. Wolf, B. Kämpfer, NPA 705 ('02) 223]

[H. Schade, Gy. Wolf, B. Kämpfer, PRC 81 ('10) 034902]

With the "naive" cross section, $\sigma_{\gamma N \to \Xi} \approx 0.3$ mb:

 10×10^{-4} \equiv^- /event too much!

HADES experiment:

 $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4} \equiv^-/$ event

BUT: \sqrt{s} dependence of $\sigma_{\mathsf{YM}\rightarrow\Xi}$ was neglected

"Model" for $YN \rightarrow \Xi$ cross section

Include the (better) known Λ[∗] -s and Σ[∗] -s from PDG

Assume (universal) constant Y^* production matrix elements

Assume universal $BR_{Y^*\to \Xi K} = 3 \%$

Include mass dependence of Γ_{Y^*}

Add contributions incoherently

Results for $p + Nb$ at $\sqrt{s_{NN}} = 3.2$ GeV

Using the above "model" in BUU we get: 1.4×10^{-4} $\equiv^-/$ event $P_{\Xi-}$ $\frac{P_{\Xi^+}}{P_{\Lambda+\Sigma^0}}=0.68\times10^{-2}$

HADES experiment:

 $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4}$ Ξ^- /event $P_{\equiv -}$ $\frac{P_{\Xi^+}}{P_{\Lambda+\Sigma^0}} = (1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$

BUT: Y production is isotropic in the BUU code If it were forward peaked, then it would enhance Ξ production!

Results for $p + Nb$ at $\sqrt{s_{NN}} = 3.2$ GeV

[COSY-TOF, EPJ A46 (2010) 27]

Angular distribution measured at three energies

Expanded in Legendre-polinomials

With anisotropic hyperon production in BUU we get:

 2.16×10^{-4} $\equiv^-/$ event $P_{\equiv -}$ $\frac{P_{\Xi^+}}{P_{\Lambda+\Sigma^0}}=1.14\times10^{-2}$

HADES experiment:

 $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4} \equiv^-$ /event $P_{\equiv -}$ $\frac{P_{\Xi^+}}{P_{\Lambda+\Sigma^0}} = (1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$

The high Ξ^- multiplicity found by HADES in subthreshold $p + Nb$ can be explained via the reaction

 $Y + N \rightarrow \equiv KN$

Both the energy, and the two units of strangeness are accumulated in two steps

Reasonable assumptions on the microscopic cross sections

Clearly non-thermal production mechanism

The angular distribution of hyperon production is relevant! $(+50\%)$

Calculation for A+A to come