Subthreshold \equiv production in p + A collisions in a BUU model

M. Zétényi, Gy. Wolf

Wigner RCP, Budapest

ExtreMe Matter Institute, Darmstadt

Strangeness in Quark Matter Utrecht, 10-15 July 2017

Introduction

HADES has measured Ξ^- production in

• Ar + KCl at $\sqrt{s_{NN}} = 2.61$ GeV: [Phys.Rev.Lett. 103, 132301 (2009)] $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = (5.6 \pm 1.2^{+1.8}_{-1.7}) \times 10^{-3}$

►
$$p + Nb$$
 at $\sqrt{s_{NN}} = 3.2$ GeV: [Phys.Rev.Lett. 114, 212301 (2015)]
(2.0 ± 0.4 ± 0.3) × 10⁻⁴ Ξ⁻/event
 $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = (1.2 \pm 0.3 \pm 0.4) × 10^{-2}$

Below the threshold of $\sqrt{s_{NN,thr}} = 3.25 \text{ GeV}$

 Ξ multiplicity is 25× the prediction of a statistical model Only UrQMD can describe the data

- ▶ heavy resonances decaying to ΞKK wit BR=10%
- tuned to $p + Nb \rightarrow \text{describe } Ar + KCl$

Introduction

Subthreshold strangeness production is interesting, because

- sensitive to reaction dynamics (collision of secondaries, Fermi motion, in-medium effects, etc.)
- \blacktriangleright strangeness is conserved \rightarrow high threshold \rightarrow still subthreshold at higher energies where large baryon densities are reached
- p + A reactions are important, because
 - intermediate step between p + p and A + A
 - cleaner than A + A
 - less production channels (e.g. collision of two secondaries is unlikely)

Possible Ξ production channels:

 $\bar{K}Y \to \pi \Xi$ $(Y = \Lambda, \Sigma)$, $YY \to \Xi N$, $\eta \Lambda \to \Xi K$

\equiv production in $\Lambda/\Sigma + N$

New production mechanism:

 $p + N \rightarrow N + K + \Lambda/\Sigma$: $\sqrt{s_{NN}} = 3.2 \text{ GeV c.f.} \sqrt{s_{thr}} = 2.55 \text{ GeV for } \Lambda$ $\sqrt{s_{thr}} = 2.62 \text{ GeV for } \Sigma$

 $\Lambda/\Sigma + N \rightarrow N + \Xi + K$: $\sqrt{s_{\Lambda N}}_{max} = 3.05$ GeV c.f. $\sqrt{s_{thr}} = 2.75$ GeV

\equiv production in $\Lambda/\Sigma + N$

New production mechanism:

 $p + N \rightarrow N + K + \Lambda/\Sigma$: $\sqrt{s_{NN}} = 3.2 \text{ GeV c.f.} \sqrt{s_{thr}} = 2.55 \text{ GeV for } \Lambda$ $\sqrt{s_{thr}} = 2.62 \text{ GeV for } \Sigma$

 $\Lambda/\Sigma + N \rightarrow N + \Xi + K$: $\sqrt{s_{\Lambda N}}_{max} = 3.05 \text{ GeV c.f. } \sqrt{s_{thr}} = 2.75 \text{ GeV}$

Cross section for $\Lambda/\Sigma + N \rightarrow N \equiv K$

Assume that Ξ production proceeds via an intermediate Λ^*/Σ^*

If everything else is also created via Λ^*/Σ^* resonances, then $\sigma_{YN,tot}$ = resonance production cross section

 $\exists \text{ production: } \sigma_{YN \to \Xi} \approx BR_{Y^* \to \Xi K} \times \sigma_{YN, tot}$

 $\sigma_{YN,tot} \approx 10 \text{ mb}$ (similar to p + p total cross section)

 $I(J^{P}) = 0(\frac{7}{2}^{-})$

Mass m = 2090 to 2110 (≈ 2100) MeV Full width $\Gamma = 100$ to 250 (≈ 200) MeV

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25-35 %	751
Σπ	~ 5 %	705
Δη	<3 %	617
ΞK	<3 %	491
Λω	<8 %	443
N K *(892)	10-20 %	515

 $BR_{Y^*\to \Xi K} \approx 3\%$

 $\rightarrow \sigma_{YN \rightarrow \Xi} \approx 0.3 \text{ mb}$

Version of BUU developed by Gy. Wolf

24 baryon resonances are propagated

Elementary cross sections for (non-strange) particle production are described by resonance production and decays

Resonance properties and creation cross sections are determined by a fit to πN and NN data

Successfully applied to strangeness production near and below threshold

[H.W. Barz, M.Z., Gy. Wolf, B. Kämpfer, NPA 705 ('02) 223]

[H. Schade, Gy. Wolf, B. Kämpfer, PRC 81 ('10) 034902]

With the "naive" cross section, $\sigma_{YN\to\Xi} \approx 0.3$ mb:

 $10 \times 10^{-4} \Xi^{-}$ /event too much!

HADES experiment:

 $(2.0\pm0.4\pm0.3)\times10^{-4}~\Xi^-/event$

BUT: \sqrt{s} dependence of $\sigma_{YN \rightarrow \Xi}$ was neglected

"Model" for $YN \to \Xi$ cross section

Include the (better) known Λ^* -s and Σ^* -s from PDG

Assume (universal) constant Y^* production matrix elements

- Assume universal $BR_{Y^* \to \Xi K} = 3 \%$
- Include mass dependence of Γ_{Y^*}
- Add contributions incoherently

Results for p + Nb at $\sqrt{s_{NN}} = 3.2$ GeV

Using the above "model" in BUU we get: $1.4 \times 10^{-4} \quad \Xi^-/\text{event}$ $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = 0.68 \times 10^{-2}$

HADES experiment:

 $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4} \equiv -/\text{event}$ $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = (1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$

BUT: Y production is isotropic in the BUU code If it were forward peaked, then it would enhance Ξ production!

Results for p + Nb at $\sqrt{s_{NN}} = 3.2$ GeV

[COSY-TOF, EPJ A46 (2010) 27]

Angular distribution measured at three energies

Expanded in Legendre-polinomials

With anisotropic hyperon production in BUU we get:

 $2.16 \times 10^{-4} \ \Xi^-/\text{event}$ $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = 1.14 \times 10^{-2}$

HADES experiment:

 $(2.0 \pm 0.4 \pm 0.3) \times 10^{-4} \equiv -/\text{event}$ $\frac{P_{\Xi^-}}{P_{\Lambda+\Sigma^0}} = (1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$ The high Ξ^- multiplicity found by HADES in subthreshold p + Nb can be explained via the reaction

 $Y + N \rightarrow \Xi K N$

Both the energy, and the two units of strangeness are accumulated in two steps

Reasonable assumptions on the microscopic cross sections

Clearly non-thermal production mechanism

The angular distribution of hyperon production is relevant! (+50%)

Calculation for A+A to come