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Elliptic flow
initial spatial anisotropy converts to final momentum space anisotropy

→

ε ≡ 〈x2−y2〉
〈x2+y2〉 v2 ≡ 〈p2x−p2y〉

〈p2x+p2y〉
≡ 〈cos 2φp〉

common picture: hydro - v2 generated by pressure gradents

→ one then uses data to extract matter properties

BUT other sources: - anisotropic escape in transport e.g., He et al, PLB 753, 506 (2016)

- QCD matrix elements e.g., Dumitru et al, PLB 743, 134 (2015)

- anisotropy from quantum mechanics DM et al, arXiv:1404.4119

- hadron-string dynamics Cassing, Bratkovskaya et al ...
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Momentum anisotropy from quantum mechanics

Back of the envelope:

v2 ∼
〈p2x − p2y〉
〈p2x + p2y〉

from uncertainty relation (for ground state, with h̄ = 1):

〈p2x〉 ∼ 1/R2
x , 〈p2x〉 ∼ 1/R2

y

⇒ v2 ∼
R2

y −R2
x

R2
y +R2

x

= ε (!)
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Statistical physics (ideal gas in trap)

H =
∑

i

H1(pi, ri) , H1(p, r) = K(p) + V (r)

Classically, smooth integrals:

dN

dp
= N

∫

dr e−H1(p,r)/T

∫

dr dp e−H1(p,r)/T
= N

e−K(p)/T

∫

dp e−K(p)/T
= isotropic ⇒ vn ≡ 0

But in QM, level spacing matters:

f(p) ≡ dN

dp
=

1

Z

∑

j

|ψj(p)|2 e−Ej/T = anisotropic

for 2D harmonic oscillator V = M
2

∑

ω2
i r

2
i , f(p) is Gaussian, and arXiv:1404.4119

v2 ≈
h̄2

12kBTM〈r2x〉
· ε

1 + ε
=

h̄2

12p2th〈r2x〉
· ε

1 + ε

Nonzero. Vanishes in the T → 0 or M → ∞ or size→ ∞ limits.
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expect percent-level v2 in small systems (p+A)

also, for not too low T : v2(pT ) ∝ p2T/MT and v2n(pT ) ≈ [v2(pT )]
n/n!
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for hot spots, it can get even better (be it initconds, or freezeout HS)

area ∼ ×1/N

size ∼ ×1/
√
N

v2 ∼ 1/L2 ∼ ×N

survives 1/
√
N weakening

if orientations fluctuate

v2 ∼ ×
√
N
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This is just a simple wave effect, so classical Yang-Mills should show it too.

Interestingly, v2 6= 0, but there is no hydrodynamic flow anywhere:

L =
ih̄

2

(

ψ∗ψ̇ − ψ̇∗ψ
)

− h̄2

2M
(∇ψ∗)(∇ψ)− V (r, t)ψ∗ψ

apply Noether’s theorem:

T 00 =
h̄2

2M
(∇ψ∗)(∇ψ) + V (r, t)ψ∗ψ (1)

T 0i =
ih̄

2
(ψ∇iψ

∗ − ψ∗∇iψ) (2)

T i0 =
ih̄

2M

(

h̄2

2M
∆ψ − V ψ

)

(∇iψ
∗) + c.c. (3)

T ij =
h̄2

2M

{

(∇iψ
∗)(∇jψ)−

1

2
δij [ψ

∗∆ψ + (∇ψ∗)(∇ψ)]
}

+ c.c. (4)

The HO wave functions are real ⇒ T 0i ≡ 0 ≡ T i0
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Estimate for HICs

can do Fermi/Bose statistics: e−Ej/T → γ

e(Ej−µ)/T+a
(a = ±1)
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Au+Au: significant intrinsic v2 for light hadrons 1404.4119
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with notable caveats: nonrelativistic treatment, no expansion dynamics
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’

Repeat for relativitic case

try ultrarelativistic limit (massless m→ 0):

H ≡ K + V =
√

p2x + p2y+m
2 + µ3[(1 + α)r2x + (1− α)r2y]

trick: swap p and x, and rescale

r̄x,y ≡ − px,y

µ
√
1± α

, p̄x,y ≡ µ
√
1± α rx,y

preserves commutation relations [r̄i, p̄j] = iδij, and Hamiltonian becomes

H = µ
[

p̄2x + p̄2y +
√

(1 + α)r̄2x + (1− α)r̄2y

]

≡ µ[K̄ + V̄ ]

→ one has to find eigenvalues and eigenvectors numerically
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’

Diagonalize in finite basis
expand over finite basis |ψj〉 =

∑

n

cj,n|φn〉

Schrödinger equation then becomes generalized eigenvalue problem

∑

n

H̄mncj,n = Ēj

∑

n

Omncj,m , (H̄mn ≡ 〈φm|H̄|φn〉 , Onm ≡ 〈φm|φn〉)

we tried:

- 2D H.O. wave fns ψn(x)ψm(y): orthonormal but expensive to evaluate

- factorized Rn(r)φm(φ) in polar coordinates with φm(φ) = eimφ

and Rn(r) ∝ rne−r: poor for diagonalization, many Omn ∼ O(1)

and Rn(r) ∼ B-spline basis: good because Omn elems often zero
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convergence with N ×N basis states
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〈v2〉 overestimated in too small bases
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averaged v2 from nonrelativistic vs massless
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similar 1/L2 size dependence for massless, but smaller v2
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For Au+Au: intrinsic v2 still present
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∼ 3× smaller in massless limit than from nonrel. approx
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pT dependence in massless limit is quite different from NR calculation
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the intrinsic v2 is smaller, and it is highest at lower momenta (linear V (r̄) is
less effiencient than quadratic V (r̄) at keeping system small)

at high pT , it saturates because tail of mom. distribution is no longer Gaussian

(for Gaussian, f(0, py=pT )/f(px=pT , 0) ∼ e−p2T (a−b) → 0, so v2(pT ) → 1)
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Small systems and hydro freezeout

Still sizeable intrinsic anisotropy for small systems R ∼ 1 fm and also at lower
temperatures relevant for freezeout from hydrodynamics
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Interactions
need insight into how the intrinsic anistropy combines with the anisotropy
from subsequent dynamics (e.g., is it additive v2 = vintr2 + vdyn2 , or nonlinear)

simple model: evolve thermal ensemble of states in a common, density
dependent single-particle potential

V (~r, t) = Kρ(~r, t)

with ρ(~r, t) = dN(~r,t)
d3r

computed self-consistently in each time step

For small K one could, as first step, estimate V from the freely expanding
K = 0 solution, which means solving the Schrödinger eqn with given V (~r, t)

We are pursuing this for the NR case because it may be possible to compute
V analytically. Stay tuned...
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Summary
Hydro is not the only source of momentum anisotropies. Quantum systems
with coordinate space anisotropy have, in general, momentum anisotropy
(Heisenberg uncertainty relation). The intrinsic anisotropy survives at finite
temperature, and can play a role at both the initial conditions. and at
freezeout. For nonrelativistic (NR) systems in a 2D harmonic oscillator
potential, v2 ∼ ǫ/12MT 〈r2x〉.

A recalculation for massless particles shows, in general, smaller anisotropies
that depend similarly on system size (v2 ∼ 1/L2), and saturate at modest
v2 ∼ O(1%) at high pT instead of the rapid growth in the NR case. For
small systems R ∼ 1 fm and at low temperatures relevant to hydrodynamic
freezeout, the anisotropy is still sizeable.

Because results between the massless and NR calculations change rather
strongly, it is important to investigate next the intrinsic anisotropy for
relativistic particles of nonzero mass.

Some open questions: - proper generalization to local thermal equilibrium
- effect of the longitudinal expansion
- evolution of the anisotropy in an interacting system
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