COMETH: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor

Y. ZHOU, J. Baudot, C. Hu-Guo, Y. Hu, K. Jaaskelainen, M. Winter

IPHC/IN2P3/CNRS, Université de Strasbourg, BP 28, F-67037 Strasbourg, France

The need for miniaturized and versatile real-time radiation monitors has become a general trend for spacecraft applications. It requires a highly integrated detection system with the ability to identify ion species in a high flux mixed environment. We have proposed [1] a new strategy to meet these requirements with a single CMOS pixel chip.

This sensor is based on a matrix of $50 \times 50 \ \mu m^2$ pixels, read out in rolling-shutter mode, and features columns ended by 3-bit ADCs with tunable threshold. An embedded digital algorithm extracts the particle properties from the hit information to provide the radiation flux on–line.

A reduced scale prototype with 32×32 pixels and 32 column ADCs has been designed and fabricated in a 0.35 µm process. The layout of the identifying and counting algorithm, downstream the pixel matrix, was developed in the same process. A full simulation of this layout for a subset of columns was used to check the algorithm output against many inputs.

Test results obtained with X-rays, β^{-} particles and laser illumination, confirm previous simulations addressing gain and linearity. Column ADCs also show expected features. Those measurements validate the possibility to monitor proton and electron fluxes up to 10^{7} particles cm⁻²·s⁻¹ and distinguish proton from electron for energies lower than 50 MeV.

[1] Y.Zhou et al., JINST 7 (2012) C12003.

*COMETH: Counter for Monitoring the Energy and Type of charged particles in High flux